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Chapter 2 Developing Content-Driven
Superpixels

Existing superpixel approaches all require
some form of initialisation. This is either in
the form of specifying the number of
regions, or a parameter that controls the
variance within the superpixels. The result is
that either some images are overrepresented,
containing more superpixels than necessary,
or under-represented, containing fewer
superpixels than necessary. In addition,
many algorithms are unstable as changing
the initialisation can drastically alter the
result [Tuytelaars and Mikolajczyk, 2007].

To combat this, the superpixels developed
here are allowed to evolve through the
image in order to develop into the ‘best’
superpixel representation without
constraining them through initialisation. The
overall scenario for the CDS approach is
that a set of seed points is initialised on an
image, shown in Figure 2.1. Given this
initialisation, the aim is to determine the
superpixels which are derived by content
driven analysis. On a blank image there is
no content and the result would be a number
of superpixels equal to those used for
initialisation. For an image with content, the
superpixels will adapt in order to represent
the content faithfully; large structures (areas
of similar colour) aim to be represented by a
small number of large superpixels and small
structures to be represented by a large
number of smaller superpixels. Accordingly,
the new approach evolves from the
initialisation to the final representation. This
requires a growth stage when the areas of
similar content are to be determined. Given
that the representation adapts to content, this
predicates a division stage when change in

Chuong 2 Xay Dung Siéu Pixel Diéu
Khién Theo Né6i Dung

T4t ca cac phuong phap siéu pixel hién nay
déu doi hoi mot s6 dang khoi tao. Nhitng
dang nay c6 thé 1a chi dinh sé ving, hoic
chi dinh mot tham sb diéu khién variance
trong cac siéu pixel. Két qua 1a mot s anh
c6 hién tugng overrepresent, tic la chira s6
siéu pixel nhiéu hon can thiét, hoac under-
represent, chira so siéu pixel it hon can
thiét. Thém vao dé, nhiéu thuat toan khéng
6n dinh vi thay doi khoi tao c6 thé anh
huong dang ké dén két qua [Tuytelaars and
Mikolajczyk, 2007].
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content is encountered. The choice of the
number of seeds and their location does not
to significantly affect the result. This is
demonstrated in Section 2.6.2 .

FIGURE 2.1: Initialisation of CDS on an
Image, shown in red.

A superpixel is defined as the set of pixels
over which it has grown. Growth adds new
pixels to this set; division creates new
superpixels by making new sets that
correspond to the newly segmented pixels.
The algorithm is seeded in a regular grid
pattern, where a single pixel is used to
initialise each superpixel.

2.1  Growth Phase

Growing a set of superpixels independently
Is a difficult task as there is no information
passed between each superpixel. With no
information, each superpixel will grow to
fill the same space as another superpixel,
which is obviously inefficient. Several
methods are explored below to solve this
problem. These are presented along with the
chosen method: the Distance Transform.

2.1.1 Active Contour Model

The work by [Kass et al., 1987, Cohen et al.,
1990] on parametric active contours is
suitable to adapt for superpixel growth.
Cohen and Cohen devised a method to make
active-contours grow outwards by inserting
a normal force (which they called a balloon
force) into the snake evolution equation,
given in Equation 2.1, that would suit
superpixel growth. The response of the
snake to the elasticity and curvature control
mechanisms are represented by a(s) and (s)




respectively, pn determines the normal force
and v(s) describes the contour.

Figure 2.2 illustrates the calculation of the
normal force of each point. Contour points
sO and s2 are used to calculate the force on
s1, which then acts outward from s1.

One modification must be made to the
original snake to use it for superpixels. This
Is an additional term that relates to the
proximity of other superpixels, to avoid the
superpixels overlapping as they grow. This
additional constraint is shown in Equation
2.2, where Esp represents the combination
of all other superpixel boundaries in the
image; analogous to image edges. This
could be combined with the image energy
however including an additional energy term
allows different weighting to be applied.
The edges of each superpixel are treated as
iImage edges such that each superpixel will
attempt to adhere to the edges of
neighbouring superpixels.

Esnake = / Eint(v(s)) + Eimage(v(s)) +
Eran(v(s)) + Esp(v(s))ds (2.2)

Js=0

As the Cohen balloon forces the contour to
expand, avoiding superpixel overlap
becomes more difficult. The points on the
snake become further apart and so there is
an increasing amount of information
between these points that gets ignored,
shown in Figure 2.3, where the point in red
appears within another shape. To maintain
stability with large contours, new points are
added to the snake as it grows. The main
problem with this approach is that it is slow
to check for superpixel overlap at an
increasing number of points and with an




increasing number of superpixels.

FIGURE 2.3: Illlustrating the effect of
contour overlap
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FIGURE 2.4: Overlapping snakes by dual-
superpixel growth

Figure 2.4 shows a problem that occurs
when growing two superpixels, labelled red
and blue, close to one another with their
joint boundary shown in purple. Despite the
additional term in Equation 2.2 the
superpixels do not identify each other as
edges and so they willingly grow into one
another. This is an inherent problem with
this style of active contour and is difficult to
overcome without exhaustively checking for
the existence of other adjacent contours;
increasing the computational load of the
algorithm.

Many people have moved away from this
Implementation for segmentation due to its
inability to adhere to edges when the
initialisation is too far from the desired
contour. Like all explicit contour methods
the Kass snake suffers from topological
changes, which is the major argument for
using more developed, and complex,
methods such as Gradient Vector Flow
(GVF) [Xu and Prince, 1997], level-set
implementations [Osher and Sethian, 1988]
and geodesic active-contours [Caselles et al.,
1997].

2.1.2 GVF field

One way to alleviate the problem of contour
overlap could be to extend the capture range
of the contours. The most well-established
method for doing so is Gradient Vector
Flow (GVF) [Xu and Prince, 1997]. GVF
replaces the image force Eext with a vector
field that pulls the snake toward strong
features from a long distance. The snake
evolves according to Equation 2.3 where v
represents the vector field, x represents the




contour and a and P are consistent with the
parameters in Equation 2.1. The vector field
can be solved using a finite-difference
method [Xu and Prince, 1998].

xt(s,t) = ax (s,t) + Px (s,t) + v(s)(2.3)

There are however some changes to be made
to the original formulation if this is to be
used for superpixels. Instead of contours
growing to find objects, contours will grow
freely unless in the presence of another
contour. To achieve this, the vector field
only acts outward from the contours, such
that any overlap with other contours is seen
as an edge during evolution. Figure 2.5 and
Figure 2.6 illustrate this. To do this
efficiently and without heuristic derivations,
the normal gradient to the contour is
computed for all points on each contour,
then the subsequent gradient field is
diffused, to increase the capture range of the
field. This process is given in Equation 2.4.
Here, u and v represent the two components
of the vector field at iteration n. The rate of
diffusion is controlled by r and should not
exceed the Courant-Friedrichs-Lewy limit
[Xu and Prince, 1998]. u0,v0 represent the
initial conditions, that is, the sum of
components i, j of the normal nk to each
superpixel Ck.

When computed for all superpixels, this has
the effect of imposing reduced growth in the
presence of additional contours and
unimpeded growth otherwise. This method
replaces the balloon force that was
previously required for contour growth.

FIGURE 2.6: Zoom on the superpixel
interface

GVF fields work well in theory however in
practice there is one flaw. The fields created




by each superpixel have to perfectly balance
out else one superpixel will ‘push against’
the other causing it to retreat. What occurs
then is that the superpixel that advances then
finds image variation and divides, creating a
new superpixel. Were this to be used, this
process would then repeat, causing
numerous superpixels to occur erroneously.

2.1.3 Distance Transform

2.1.3.1 Introduction

When controlled by image properties, as has
been the case so far, superpixel growth is
difficult to control and produces
initialisation problems. If the superpixel is
designed to halt growth on reaching image
features, it is unlikely to cover the entire
image without at least estimating the number
of superpixels required prior to computation.
The minimum number of superpixels is also
limited by the initialisation. Hypothetically,
one would need to know the number of
superpixels and an estimate of optimum
location (see, for example, [Levinshtein et
al., 2009]). Therefore, the best way to cover
the image without requiring a-priori
knowledge is not to consider image
properties during superpixel growth. By
only considering superpixel boundaries,
each superpixel can grow unimpeded unless
In the presence of another superpixel.

To grow superpixels without considering the
image, the distance transform is con-sidered.
The distance transform [Borgefors, 1986]
can be considered equivalent to binary
dilation from mathematical morphology but
can be computed significantly faster. In
morphology, the object is successively
eroded until it disappears, with the value of
each pixel corresponding to the number of
iterations until that particular pixel
disappeared.

It is typically used for skeletonisation of




image objects where the skeleton is
described by transforming each object such
that it displays the distance of object pixels
to its boundary with the background.

The algorithm transforms an image to show
the distance to a specified colour. This can
be used in binary images by showing the
distance to either state. The transform also
returns an array that determines the closest
location in the image that matches the
specified colour or state.

2.1.3.2 Use of the distance transform
on superpixels

To grow a superpixel, a distance transform
of every superpixel that exists is taken. The
superpixels are not transformed individually
to eliminate superpixel overlap. This is
illustrated later in Figure 2.8.

The algorithm transforms each superpixel S
such that the set of pixels at each location (i,
J) within the superpixel display the distance
D to the background (in

FIGURE 2.7: Binary Dilation operator on a
superpixel shape. The grey pixels indicate
where the superpixel will grow.

this case, the region in which superpixels
have vyet to form). Superpixel edges
therefore have a distance of one from the
background. This is shown in Equation 2.5,
where the locations (k, 1) form the set of
points that constitute the background. The
image | used to calculate the distance
transform is a binary image where True
denotes that a superpixel covers this point in
the image and False otherwise. The
background is therefore all the False points
in this image. The same image is used to
individually grow each superpixel.

Equation 2.6 shows the iteration, t, of the
superpixel to include the background




location (k, ) that is adjacent to the
superpixel edge. By only considering the
pixels that have a distance of one from the
background, superpixel overlap is handled
implicitly. Any pixel inside the superpixel or
adjacent to another superpixel is not
connected to the background and hence the
superpixel cannot grow at these locations.
As the distance transform is stable for any
shape, the superpixels can grow from any
initial size and shape. The stopping criterion
Is a direct consequence of the algorithm;
terminating once the superpixels cannot
grow any further. This occurs when they are
completely bordered by other superpixels or
Image boundaries.
eceeeesiinnsneeee ]
Figure 2.7 shows how the binary dilation
works on a superpixel. The black pixels
FIGURE 2.8: Dilation operator on two
neighbouring superpixels. The red and blue
pixels show the two different superpixels.
The lighter pixels show the new pixels for
each superpixel. The outline shows the
current envelope of the superpixel area.

represent the original shape, the grey pixels
are the parts to which it grows in the next
iteration and the white pixels are the
background.

Figure 2.8 demonstrates how this extends to
two neighbouring superpixels. The two
superpixels shown in opposing colours, red
and blue, only grow where they are not
bordered by another superpixel. The outline
shows the current envelope of both of the
superpixels. There is a single purple pixel in
the image to show the potential overlap of
two superpixels in close proximity. As each
superpixel grows independently, both
superpixels will occupy this location after
growth. Post processing is performed to
remove these overlapping pixels from one of
the conflicting superpixels.




2.2 Division Phase

As superpixel growth does not take the
image information into account, it is
required that the superpixel division method
must take the image into account in order to
fully describe the image. What follows is a
comparison of several methods of
segmentation available to divide
superpixels.

2.2.1 Graph Partition

Using the N-cuts algorithm it would be
possible to partition the superpixel using a
pixel-based graph created within the
superpixel. Weights are applied to graph
edges according to the Euclidean colour
distance between nodes. The minimum cut
through the edges can be taken in order to
segment  the  superpixel.  However,
segmentation will always occur if there is
not a minimum weight, so a superpixel
containing one colour will divide into two
superpixels of the same colour. This is an
undesirable property. If at each iteration the
superpixel area  increases and s
subsequently halved, it will be very difficult
to achieve much less than pixel resolution.
2.2.2 Watershed

The watershed algorithm [Meyer and
Beucher, 1990] ‘floods’ an image from a
chosen number of local minima until the
sources meet. The boundaries of these
independent floods become the
segmentation  boundaries. Usually this
would require knowledge of the number of
regions required, however binary
segmentation would be possible given two
sources. This method would always create
two regions irrespective of image content, so
a way of sensing variation or a bi-modal
distribution would have to be produced in
order to trigger the segmentation. The




location of the initialisation would also
significantly affect the result for example if
the two minima were close together or near
the edge of the superpixel.

2.2.3 Region Growing

Similarly to the Watershed algorithm,
Region Growing involves growing a single
pixel from local minima until no new pixels
can be added. It will only add pixels that are
similar to pixels already contained in the
region. However, Region Growth can suffer
from initialisation variation. One
initialisation can give a vastly different
result to another. This can be seen in Figure
2.9. As the algorithm only adds similar
pixels, growth stops once the colour
boundary is reached. The result is that the
algorithm is susceptible to noise. One
advantage over the Watershed algorithm is
that it would only produce two superpixels if
there was a boundary created within the
superpixel. If the algorithm were to reach
the superpixel boundary without stopping
then the superpixel is homogeneous with
respect to the splitting criterion.

(@) Image under test (b) Top left (c)
Centre (d) Bottom right

FIGURE 2.9: Region growing initialisation
problem, with the seed point marked in red.
Only the centre seed gives the correct result.

2.2.4 Local Active Contours without Edges

As superpixel division (via segmentation) is
occurring at a small scale, more so-
phisticated segmentation algorithms become
viable. Using, for example, a kernel based
on Mumford and Shah [1989] leads to a
situation where region-based segmentation
algorithms can be used to generate new
superpixels. Active Contours Without Edges
(ACWE) cannot normally be wused in
complex images due to its creation of only
two regions: object and background.




However in this case, region- based
segmentation becomes an ideal solution.

A benefit of ACWE is the addition of
localised smoothing introduced by the
approach. This helps to restrict superpixel
division; a necessary requirement due to the
greedy nature of the algorithm. In addition,
division will not occur if the colour of the
superpixel is uni-modal.

2.2.4.1 The Basics of ACWE

Active Contours Without Edges (ACWE)
aims to partition an image u0 into two
piecewise-constant intensities of distinct
values u and u2. These piecewise regions are
separated by a boundary cO such that
Equation 2.7 is minimised.

where F describes the force from inside and
outside the contour and ci, c2 are the
averages of the regions inside and outside
the contour. It can be easily seen from this
that if the boundary lies outside cO, then
F1(C) > 0 and F2(C) =0. If the

FIGURE 2.10: Illustrating the evolution of
the boundary [Chan and Vese, 2001]

boundary is inside cO then F\(C) = 0 and
F2(C) > 0. This is shown in Figure 2.10.

Next some regularising terms are added to
control the length of the contour and the area
of the region inside C. This can all be
represented by an energy function F in
Equation 2.8, where p, v, Ai, A2 are
weighting co-efficients.

......................




2.2.4.2 Level Set Method
ACWE can be solved using level sets.
Equation 2.9 introduces 0 as a function of
the image, and defines the contour C as the
points in the image H where 0 = 0. The
points inside the resulting contour are
denoted by u.
C=5u=(x, y)eH :0(x,y) =0 inside(C) =u
= {(x,y) E H : 0(x,y) > 0} outside(C) = H/u
={(x,y) EH:0(x,y) <0
Using the Heaviside function H, and the
Dirac 5 function, we can write F as in
Equation 2.10 where u0 is the image and c1,
c2 are the averages as described in 2.11.
Av and A are positive parameters.

(2.11)

2.2.4.3 ACWE for Vector Valued
Images

ACWE can easily be extended [Chan et al.,
2000] to any size of vector for each pixel by
averaging over the vector length. For
example, over the three colours in RGB
space. This is shown in Equation 2.12.

2.2.4.4 Adaptation for Local Area

Chan-Vese segmentation of superpixels,
shown in Figure 2.11, works by considering
two regions u, v that form the positive and
negative parts of a signed distance function,
. A force F iteratively updates the distance
function (Equation 2.13) such that each
pixel is ‘moved’ toward the region it best
matches by adding the force F to the surface
0. The new superpixels, Cu, Cv, are taken to
be the positive and negative parts of 0.

In this application, the problem is further
simplified by considering only a subset of
the image: the area within the superpixel.




Considering these smaller regions makes the
problem tractable as an iterative algorithm.
This is achieved by the inclusion of a binary
function S(x,y) that is greater than zero
when inside the superpixel and zero
otherwise. In addition, the length and area
constraints have been removed as the
smaller area of the superpixel does not
require them. Both weighting parameters A
are set to one to give equal weight to either
side of the contour.

The final force equation is given in Equation
2.13, where t denotes the iteration of 0. The
updated average calculation for c1,2 is given
in Equation 2.14, where the same constraint
on S(x,y) is applied.

(a) Before (b) Contour plot show- (c)
Contour plot showing  (d) After

ing the initialisation of the the final distance
function distance function

FIGURE 2.11: Illustrating the mechanism of
division. The superpixel is divided by
‘moving’ the distance function causing
pixels to be either positive or negative.

(@) Before labelling

(b)  After labelling

FIGURE 2.12: The split in the segmentation
Is corrected by using connected component
labelling. The green superpixel is the new
superpixel.

2.2.4.5 Choice of Initialisation

ACWE is initialised by setting the distance
function 0 to be a function in the range of
+1. When considering only a small region of
the image, it is expected that initialisation
will be important, and that the faster it is
possible to arrive at the best solution, the
faster the algorithm will perform. To select




the best initialisation, a set are tested on a
modulated cosine signal (Figure 2.13(a)) to
observe the amount of incorrect labelling.

As ACWE can be realised in N-dimensions,
a 1D signal is used to observe the results in a
concise way. The chosen initialisations to
test are:

. 0[x] = 0 (Figure 2.13(b));

. O[x] = 1 (Figure 2.13(c));

. 0[x] = —1 (Figure 2.13(d));

. 0 is alternately £1 (Figure 2.13(e));

. 0 is the signal, normalised to the
range £1 (Figure 2.13(f))

As the chosen signal varies uniformly
around zero, the resulting segmentation
should be to separate the signal into two
signals either side of zero. The orientation of
the result does not matter (some are flipped),
what is important is that the two extracted
regions (shown in different colours)
correspond to all of the correct points in the
signal. It is important to make the distinction
that the values of O are not the image values,
they are the values of the distance function
that are used to segment the signal. Figure
2.13 shows the results of this test where red
circles denote error. The only two results
without error are the cases where 0 = 0 and
where 0 relates to the signal. However,
normalising the image over the range 1
will force large changes in O that should not
necessarily exist in like-pixels. This could
force unnecessary superpixels and remove
the  smoothing effect of ACWE.
Consequently, the initialisation will be 0 =
0.

2.3  Control

CDS is designed not to require controlling
parameters as the idea is to create the best
possible reconstruction of the image.




However, one can still influence the result in
the following two ways. Firstly, the level of
detail detected by the algorithm can be
controlled by smoothing the image using a
simple Gaussian filter with standard
deviation a. This still retains the larger
Image variation however details such as
facial features are missing. Figure 2.14
shows this effect. Adding the smoothing
removes all facial features and treats the
face as a single superpixel. Also, the brim of
the hat still exists but the rest of it is merged
with the grass behind it. The clothes are also
merged into a single superpixel.

Secondly, the number of superpixels can be
controlled by the initialisation of the
superpixel seeds. The number of seeds is the
minimum possible number of superpixels
that are to be generated. This has a small
effect on the result as the final shape and
distribution might be different, however the
same features will be detected regardless of
the initialisation, and the reconstruction
quality is unaffected.

2.4 Final method

By using a modified Distance Transform in
conjunction with localised ACWE, there are
numerous benefits. The Distance Transform
allows implicit handling of an arbitrary
number of superpixels of any size and any
shape. Allowing them to grow unimpeded
by image properties ensures total image
coverage from any initialisation. New
superpixels are handled from within the
superpixel, as they

(a) Original image with no smoothing, a=0
(b) Original image with smoothing, a =2
(c) Reconstruction, a=0 (d)




Reconstruction, a = 2
FIGURE 2.14: Showing the effects of
Gaussian based control

are formed when the superpixel is no longer
uniform in colour, irrespective of size. The
combination of these two algorithms is such
that they can produce accurate superpixels
that are stable and will not overlap under
any condition.

A pseudocode implementation of the
algorithm is given in Appendix B.

2.5 A Discussion on Region Merging
There is a temptation once the superpixels
have been generated to remove the artificial
boundaries produced where superpixel seeds
meet. This could be achieved by merging
them where the colour distance between
neighbours is small. This is perhaps useful
to further reduce the °‘resolution’ of the
superpixels.

FIGURE 2.15: Borders that exist due to
seeds meeting, with some of the superpixels
that could be merged marked with green
dots

The ability to merge regions will not be
developed for several reasons. The first is
that if one reduces the number of
superpixels, the superpixel representation no
longer reflects the image content as there
would have to be a threshold in order to
merge superpixels. The second reason is that
this would only really affect the borders
between seed superpixels. Theoretically,
borders only exist between distinct
superpixels and that merging them again
appears counter-intuitive to the original
reasoning behind the algorithm. Removing
borders between seed superpixels, shown in
Figure 2.15, actually removes a very small
percentage of superpixels. The final reason
IS that this step is tantamount to clustering,




and if this is the desired effect then it could
easily be achieved via k-means or other such
algorithms, using the superpixels as a pre-
processing step. An initialisation of one
superpixel would solve this minor problem,
but it will require additional processing
time.

Figure 2.15 also shows that the superpixel
growth  algorithm  causes anisotropic
boundaries to occur. This is a consequence
of the distance transform and does not affect
the quality of the reconstruction so it was
not altered to produce isotropic boundaries.
2.6  Analysis

2.6.1 Method of Analysis

Superpixels are only useful if they can
capture relevant image information. As the
focus is on image representation, evaluation
must focus on evaluating the ability to
reconstruct an image by losing as little
information as possible. Reconstruction is
defined as the process of replacing the
colour of each pixel (X, y) with the mean of
the superpixel ~(x,y) it is contained in, given
in Equation 2.15

1(xy)="ixy) (2.15)

The results come from the test set from the
Berkeley Segmentation Dataset (BSDS)
[Martin et al., 2001]. BSDS includes human
segmented annotations of the original
images, typically five for each image. Given
that the labels are much larger than a typical
superpixel, each label will contain multiple
superpixels. Mode label analysis s
introduced in order to identify
undersegmentation error, the average
proportion of each superpixel that matches
the modal annotated label. In addition, the
percentage of label boundaries that match
superpixel boundaries, the boundary recall
rate, is computed. These are weighted such




that borders included by all subjects are
stronger than those occurring in one image.
What is not computed is the boundary
precision rate. This is the percentage of
superpixel boundaries that match label
boundaries. Using recall rate alone has been
considered sufficient in previous research
and gives a good result even if many
superpixels edges do not occur at label
edges. This is because the focus in previous
resecarch  has been on  avoiding
undersegmentation rather than
oversegmentation.

The use of metrics on this database is not
sufficient. During the generation of BSDS,
subjects were instructed to make sure all
labels were of equal importance and size
within the image. Consequently, small detail
could easily be falsely attributed to incorrect
or insufficient labelling. To provide a
measure independent of the human labels,
the ‘explained variation” Moore et al. [2008]
is calculated, providing a measure of
superpixel accuracy, which helps to evaluate
superpixels that do not correspond to the
human-labelled edges. It calculates how
accurately the mean of each superpixel
matches the pixels within by calculating the
variation about the global mean. This is
given in Equation 2.16, where x* represents
the pixel value, ™ is the mean of the
superpixel containing the pixel x* and * is
the global mean of the image.

R2 = EniPi » (2 16)

E*(x-P)2 ()

Explained variation can be considered a
measure of undersegmentation. If the
average colour of a superpixel does not




accurately represent the pixels within it, that
region is undersegmented.

Many analysis techniques, such as explained
variation, favour more rather than less
superpixels. While it is recognised that this
Is often not the main aim of superpixels,
results can be improved if more superpixels
are present to capture the higher levels of
image variation. The extreme of this being
of course the case where each superpixel
represents a single pixel.  Taking
oversegmentation into account removes the
emphasis on just creating more superpixels
to capture more information. The emphasis
Is then on creating superpixels to capture
more information only when required to do
so by the image properties. As such,
oversegmentation can be considered
analogous to a measure of superpixel
precision. As CD superpixels split on colour
differences, oversegmentation can be
measured by the Euclidean distance between
the mean colour value of each connected
superpixel averaged over all connections. If
this value is low, then the average distance
between superpixels is small, and therefore
superpixels are less distinct in colour,
implying that oversegmentation exists. This
measure is given in Equation 2.17 where (r,
#,6)e[0,1] represent the colour of connected
superpixels 1, j. C represents the sum of all
superpixel connections and c represents a
single connection.

E/(ri-r)2+(gi-g,)2+ (b, -hb,)2

d=-C (2.17)

The results generated in this chapter are
compared against the algorithms in
[Felzenszwalb and Huttenlocher, 2004](FH)
and [Ren and Malik, 2003](N-Cuts) as these
are well established techniques. As our new
algorithm does not directly control the
number of superpixels, all comparisons are
achieved by using the output from CD
superpixels to specify the equivalent




parameters in the other algorithms. To
assess the quality of our algorithm, results
are generated on each image using varying
levels of Gaussian smoothing. This allows a
comparison to be drawn as the number of
superpixels changes.

Finally, the compression ratio is defined as
the ratio of pixels to superpixels. Plotting
this ratio instead of the explicit superpixel
numbers helps to put the result into
perspective irrespective of the image size. A
low compression ratio indicates

(@) Initialisation A: 9 superpixels; result:

8871 super-(b) Reconstruction  using
initialisation A.
pixels.

(c) Initialisation B: 36 superpixels; result:

7248  super-(d)  Reconstruction  using
initialisation B.

pixels.

FIGURE 2.16: Illustrating the difference
between two different initialisations

arranged in an evenly spaced grid. Despite
the difference in the initialisation the
reconstruction is hardly affected.

a high number of generated superpixels.

As shown in Figure 2.16, even though the
output can be directed by the initialisation,
the reconstruction is largely unaffected
despite  the difference in  resulting
superpixels. In addition, all results are
similarly affected by smoothing the image.
For this reason, the initialisation will not be
changed while testing the effects of
smoothing. However, the invariance to
initialisation is tested. This invariance is
tested on a single image using random
Gaussian perturbations of the grid pattern at
varying levels of standard deviation.

The algorithm is also assessed when
introducing increasing amounts of Gaussian
noise.




Compression Ratio

FIGURE 2.17: Showing the difference in
colour between superpixel neighbours as a
function of superpixel compression.

2.6.2 Results

Figure 2.17 shows the colour difference
between neighbouring superpixels as a
function of the number of superpixels in the
image over the test set of images from
BSDS. A lower value indicates that the
colour difference is smaller, or in other
words, that the regions are more likely to be
oversegmented as two neighbouring
superpixels could be represented as one. N-
cuts performs badly on this test because as
the number of superpixels increases, the
oversegmentation increases. This is not
unexpected as superpixels generated in this
way are designed to be of similar size,
meaning that large regions of one colour
will contain the same number of superpixels
as a much more complex region. CD
superpixels, however, has an almost uniform
response despite the number of superpixels.
This means that as the number of
superpixels increases and the representation
of the image improves, the colour difference
between superpixels remains constant.
When specifying lower numbers of
superpixels for N-Cuts and FH, the latter
performs best. Again this could be due to the
implicit nature of superpixels generated by
Felzenswalb.

Figure 2.18 shows the relationship between
oversegmentation and undersegmentation.
N-cuts and FH both show, to varying
degrees, that as the explained variation of
the result increases (how well is the image
reconstructed by superpixels), the difference
in colour Dbetween those superpixels
decreases, leading to oversegmentation.
FIGURE 2.18: Showing the difference in
colour between superpixel neighbours as a




function of explained variation.

CD superpixels remains almost constant,
irrespective of the quality of reconstruction.
This means that increasing the quality of
result for CD superpixels does not lead to
large amounts of oversegmentation as would
normally occur.

A sample image is taken from all three
algorithms at the same Explained Variation
value denoted by the dotted line in Figure
2.18. These three images are shown in
Figure 2.19. N-Cuts clearly contains too
many superpixels, particularly in the central
area surrounding the person. FH does a
better job in the centre of the image. The
windows in the right hand tower are well
detected, yet the trees contain significant
undersegmentation, as does the person in the
centre. CDS performs well, particularly in
the trees and the person in the centre yet,
like N-Cuts, does not detect the windows on
the right.

Figure 2.20 illustrates three metrics: recall
rate; explained variation; and mode label. In
Figures 2.20(a) and 2.20(b), CD superpixels
perform well, but only at high numbers of
superpixels (low compression). Recall rate
(Figure 2.20(c)) clearly shows N-cuts to
perform best by almost 20% at low
compression. Soon after, all three algorithms
are largely equivalent until  high
compression at which point CD superpixels
suffers.

FIGURE 2.19: Example images all shown at
the same value for Explained Variation
shown in Figure 2.18

FIGURE 2.21: Showing how recall rate,
mode label and explained variation all vary
as the initialisation is perturbed by a
Gaussian random variable of standard
deviation a.

The ability of CD superpixels to provide a
constant measure of oversegmentation
throughout is an interesting property of the




algorithm. It is thought that it can be
explained by the use of ACWE as a splitting
algorithm. As ACWE uses colour
differences to divide, and almost all
neighbouring superpixels have occurred
through division, the constant difference in
colour must be attributed to how ACWE
separates a region. The benefit of this is
improved  stability when  generating
superpixels.

CD superpixels clearly suffer with regard to
recall rate. As the control mechanism comes
from smoothing the input image, the edges
and detail in the image degrade with more
smoothing. This reduces the likelihood of an
image boundary matching a superpixel
boundary. This problem occurs for all
metrics plotted in Figure 2.20 however
colour difference does not suffer for the
same reason described above.

One further important point is that the
human labelling used for recall rate and
mode analysis is subjective. Labels are
drawn on the assumption that they are
equally important to the user. While this is
partially accounted for by the averaging,
some important image information is
ignored. For this reason, superpixel quality
should not be exclusively assessed by low-
resolution labelling. The use of explained
variation is intended to address this issue.
Figure 2.21 shows the results of perturbing
the initialisation by a random Gaussian
variable of increasing variance. Explained
variation and modal label vary little, having
standard deviations of 0.3 and 0.01
respectively. Recall rate is the only metric
that varies by more than one percentile at
2.4. This is still a small variation and is
attributed to one result only, at a = 2. Colour
difference is not assessed as the previous
experiment has shown it is almost constant.
The results in Figure 2.21 show there is high
stability in the algorithm. As CD superpixels




are parameterised on image properties, the
number of superpixels is forced to adhere to
the image and consequently, there is little
possibility of the superpixel arrangement
deviating. This helps to resolve one major
problem of superpixel algorithms: that they
are unstable due to initialisation parameters.
Figure 2.23 shows the effect of noise on the
algorithm. The noise was generated by using
a Gaussian random variable of increasing
variance centred on the value of each pixel.
This will make the image tend more toward
a completely random image where no
structure is present. The variance s
controlled between a =10 and a = 70 such
that the image is still at least partially
visible.

This shows that the reconstruction accuracy
reduces as the image tends toward being
completely random.

One would expect that as the image
becomes less structured that it is more
difficult for CDS to extract regions of
uniformity. CDS has an inherent averaging
process, which in most images has little
effect. Using images where the colour
changes frequently and unpredictably clearly
affects the reconstruction quality. However,
the explained variation is still 75% in the
presence of significant noise. This can be
seen in Figure 2.22 where the visual quality
of the result appears to have been improved
by the presence of noise. The reason for this
Is that there are more superpixels triggered
by the presence of more variance within
local areas. So the result is more visually
pleasing, yet the oversegmentation has been
increased.

2.7  Conclusion

This  chapter has developed and
demonstrated an algorithm that can
successfully and, more importantly, reliably
reconstruct an image using superpixels. The
results also show that the instability of




previous superpixel algorithms has been
reduced by parameterising superpixels not
by number but by image complexity.

(b) Reconstructionata2 =0

(c) Image at a2 = 70

(d) Reconstruction at a2 = 70

FIGURE 2.22: Examples of the effect of
noise on an image and its reconstruction.
FIGURE 2.23: Quality of reconstruction as
noise increases

This improves the invariance to initialisation
as all metrics used vary by less than 3%.

The performance of Content-Driven
Superpixels is dependant on image
complexity. The more complex an image is
the better the performance of CDS. This
might seem counter-intuitive yet it is linked
to the use of ACWE as a division method.
As the colour information within the
superpixel is averaged, bigger superpixels
are more likely to contain larger colour
differences. A smaller superpixel is more
sensitive to small variation in colour as it
makes a larger contribution to the average.
This averaging also causes problems if two
areas vary significantly yet their means are
similar. This manifests itself when dealing
with noisy images, as shown in Figure 2.23.
Superpixels will not divide under this
circumstance and this reduces the
reconstruction quality.

In addition, this chapter developed the
previously overlooked concept of explicitly
measuring oversegmentation to better
evaluate superpixels. It was subsequently
shown that CDS oversegments less than
other well-used algorithms.

In general, superpixels remain to have their
uses truly explored. The ability to reduce
image complexity whilst retaining high-level
features is highly desirable in many areas of




computer vision and the next few chapters
explore some potential applications.






